Abstract
AbstractWe propose a general framework for iceberg-calving models that can be applied to any calving margin. The framework is based on mass continuity, the assumption that calving rate and terminus velocity are not independent and the simple idea that terminus thickness following a calving event is larger than terminus thickness at the event onset. The theoretical, near steady-state analysis used to support and analyze the framework indicates that calving rate is governed, to first order, by ice thickness, thickness gradient, strain rate, mass-balance rate and backwards melting of the terminus; the analysis furthermore provides a physical explanation for a previously derived empirical relationship for ice-shelf calving (Alley and others, 2008). In the calving framework the pre- and post-calving terminus thicknesses are given by two unknown but related functions. The functions can vary independently of changes in glacier flow and geometry, and can therefore account for variations in calving behavior due to external forcings and/or self-sustaining calving processes (positive feedbacks). Although the calving framework does not constitute a complete calving model, any thickness-based calving criterion can easily be incorporated into the framework. The framework should be viewed as a guide for future attempts to parameterize calving.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.