Abstract
AbstractThis manuscript is concerned with the problem of efficiently estimating chemotactic gradients, as forming a ubiquitous issue of key importance in virtually any proof of boundedness features in Keller–Segel type systems. A strategy is proposed which at its core relies on bounds for such quantities, conditional in the sense of involving certain Lebesgue norms of solution components that explicitly influence the signal evolution.Applications of this procedure firstly provide apparently novel boundedness results for two particular classes chemotaxis systems, and apart from that are shown to significantly condense proofs for basically well‐known statements on boundedness in two further Keller–Segel type problems.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.