Abstract

Photoelectrochemical (PEC) water splitting to produce renewable H2 fuel by storage of solar energy has attracted increasing attention as it could reduce carbon footprint and solve the global consumption growth. Herein, a photostable polymer polydopamine (PDA) was introduced to enhance the PEC performance by forming a uniform inorganic-organic hybrid heterostructure with CdS. The organic semiconductor PDA not only forms a strong coordinate bond to facilitate the transfer of electrons, but also acts as a passivation layer, contributing to improve the stability of the photoelectrode. A photocurrent density of 1.08 mA cm-2 was achieved for CdS/1PDA, which was about 2.4 times that of bare CdS at 0.28 V vs. RHE, and CdS/1PDA featured a reasonable photocurrent stability compared with bare CdS. The Co-Pi co-catalyst, as a hole acceptor, further prohibited charge recombination and promoted the water oxidation kinetics. The photocurrent density of CdS/1PDA/5Co-Pi was up to 2.68 mA cm-2 (0.28 V vs. RHE), which was 5.7 and 2.5 times higher than that of bare CdS and CdS/1PD, respectively. The strategy provides a beneficial insight to design an inorganic-organic uniform heterostructure for the enhancement in PEC performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.