Abstract
This study addresses time-dependent multiple-scale reaction-convection-diffusion initial boundary value systems characterized by strong coupling in the reaction matrix and weak coupling in the convection terms for a locally optimal accurate solution. The discrete problem, which typically loses its tridiagonal structure, expands its bandwidth to four in such coupled systems, resulting in a substantial computational load. Our objective is to mitigate this computational burden through a splitting approach that transforms the non-tridiagonal matrix into a tridiagonal form while maintaining the consistency, local optimal accuracy in space, and stability of the numerical scheme. We employ equidistributed non-uniform grids, guided by a carefully chosen monitor function, to approximate the continuous space domain. The discretization strategy targets local optimal linear accuracy across space and time on the domain's interior points. In addition, we have also provided the global convergence analysis of the present splitting approach, mathematically. The mathematical evidence is also obtained from the numerical experiments by comparing the splitting approach (either diagonal or triangular forms) of the reaction matrix to its coupled form. The results strongly confirm the effectiveness of this approach in delivering uniform linear accuracy, based on the present problem discretizations while significantly reducing the computational costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.