Abstract

The new concept of universal parameterized net classes is introduced in order to allow a uniform approach to different kinds of Petri net classes. By different actualizations of the net structure parameter and the data type parameter we obtain several well-known net classes, like elementary nets, place-transition nets, colored nets, predicate transition nets, and algebraic high-level nets, as well as several interesting new classes of low- and high-level nets. While the basic concept of parameterized net classes is defined on a purely set theoretical level the extended concept of universal parameterized net classes takes into account also morphisms and universal properties in the sense of category theory. This allows to discuss general constructions and compatibility results concerning union and fusion of nets for different types of net classes.KeywordsCategory TheoryGraph GrammarUniform ApproachUniversal ParameterAlgebraic SpecificationThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.