Abstract

Inflammation and thrombosis are two major complications of blood-contacting catheters that are used as extracorporeal circuits for hemodialysis and life-support systems. In clinical applications, complications can lead to increased mortality and morbidity rates. In this work, a biomimetic erythrocyte membrane zwitterion coating based on poly(2-methacryloyloxyethyl phosphorylcholine-co-dopamine methacrylate) (pMPCDA) copolymers is uniformly and robustly modified onto a polyvinyl chloride (PVC) catheter via mussel-inspired surface chemistry. The zwitterionic pMPCDA coating exhibits excellent antifouling activity and resists bacterial adhesion, fibrinogen adsorption, and platelet adhesion/activation. The material also demonstrates great hemocompatibility, cytocompatibility, and anticoagulation properties in vitro. Additionally, this biocompatible pMPCDA coating reduces in vivo foreign-body reactions by mitigating inflammatory response and collagen capsule formation, due to its outstanding ability to resist nonspecific protein adsorption. More importantly, when compared with a bare PVC catheter, the pMPCDA coating exhibits outstanding antithrombotic properties when tested in an ex vivo rabbit perfusion model. Thus, it is envisioned that this biomimetic erythrocyte membrane surface strategy will provide a promising way to mitigate inflammation and thrombosis caused by the use of blood-contacting catheters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.