Abstract

In this paper, the effects of bounded disturbances on decentralized event-triggered control systems are studied. The input-to-state (practical) stability of integral-based event-triggered control systems and dynamic event-triggered control systems is analyzed in a uniform framework by utilizing a new Lyapunov functional approach. An estimation on the upper bound of the input-to-state stability gain is given analytically. First, Zeno behavior is excluded with the time-regularized mechanisms, that is, a prespecified lower bound of inter-event times is introduced. Then, the conditions are presented under which the considered event-triggered control systems ensure Zeno-freeness without time regularization. Finally, a numerical example is given to illustrate the efficiency and feasibility of the proposed results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.