Abstract

In this paper, the time fractional diffusion equations optimal control problem is solved by 3−α order with uniform accuracy scheme in time and finite element method (FEM) in space. For the state and adjoint state equation, the piecewise linear polynomials are used to make the space variables discrete, and obtain the semidiscrete scheme of the state and adjoint state. The priori error estimates for the semidiscrete scheme for state and adjoint state equation are established. Furthermore, the 3−α order uniform accuracy scheme is used to make the time variable discrete in the semidiscrete scheme and construct the full discrete scheme for the control problems based on the first optimal condition and ‘first optimize, then discretize’ approach. The fully discrete scheme’s stability and truncation error are analyzed. Finally, two numerical examples are denoted to show that the theoretical analysis are correct.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.