Abstract
A new approach to modeling yield is presented, which inherently includes both the effects of the conventional defect contributors and the parametric yield loss contributors often treated separately in existing yield models. These parametric yield losses are particularly important during the startup yield-improvement phase of new technology introduction, in many performance-sensitive products such as analog devices and high-speed digital devices, and in analyses of bin-split yields. By assuming a distribution in the size of defects, from point defects up to defects as large as or larger than a wafer, the parametric yield contributors can be viewed as simply rather large, design-dependent defects, which will render IC's unacceptable if any portion of the large defect overlaps the defect-sensitive area of a chip. In this way, the conventional Poisson model, or various extensions of the well-known Murphy model, can be augmented in a straightforward and general way to include parametric yield loss. It is shown that parametric yield losses introduce an additional die size dependence for yield that can help to account for the observed dependence of yield on die area. The model is compared to other models and to experimental yield data to illustrate both its utility in separating yield contributors and its close agreement with experimental yield data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.