Abstract
The nerve theorem is a basic result of algebraic topology that plays a central role in computational and applied aspects of the subject. In topological data analysis, one often needs a nerve theorem that is functorial in an appropriate sense, and furthermore one often needs a nerve theorem for closed covers as well as for open covers. While the techniques for proving such functorial nerve theorems have long been available, there is unfortunately no general-purpose, explicit treatment of this topic in the literature. We address this by proving a variety of functorial nerve theorems. First, we show how one can use elementary techniques to prove nerve theorems for covers by closed convex sets in Euclidean space, and for covers of a simplicial complex by subcomplexes. Then, we establish a more general, “unified” nerve theorem that subsumes many of the variants, using standard techniques from abstract homotopy theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.