Abstract

A unified view of direct-integration (DI) and exponential-time-differencing (ETD) methods to incorporate Drude media, such as isotropic plasma and microwave graphene, into finite-difference time-domain (FDTD) simulators is provided. To this end, the Drude constitutive relation is expressed in integral form and the DI integrators are obtained by applying quadrature rules. Analogously, the ETD integrators are obtained by starting from the variation of constants formula and applying the same quadrature rules as in the DI case. This approach allows one to directly compare the two families of methods. In addition, the accuracy of each integrator is discussed and the stability condition of the resulting FDTD schemes is derived in exact closed form by applying the von Neumann method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.