Abstract

In this contribution, we derive a gas–liquid two-scale multi-fluid model with capillarity effects to enable a novel interface regularization approach for multi-fluid models. As this unified modelling is capable of switching from the interface representation of a separated to a disperse regime it lays a new way of modelling regime transitions as it occurs in atomization processes. Above a preset length threshold at large scale, a multi-fluid diffuse interface model resolves the dynamics of the interface while, at small-scale, a set of geometric variables is used to characterize the interface geometry. These variables result from a reduced-order modelling of the small-scale kinetic equation that describes a collection of liquid inclusions. The flow model can be viewed as a two-phase two-scale mixture, and the equations of motion are obtained thanks to the Hamilton’s Stationary Action Principle, which requires to specify the kinetic and potential energies at play. We particularly focus on modelling the effects of capillarity on the mixture’s energy by including dependencies on additional variables accounting for the interface’s geometry at both scales. The regularization of the large-scale interface is then introduced as a local and dissipative process. The local curvature is limited via a relaxation towards a modified Laplace equilibrium such that an inter-scale mass transfer is triggered when the mean curvature is too high. We propose an original numerical method and assess the properties and potential of the modelling strategy on the relevant test-case of a two-dimensional liquid column in a compressible gas flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.