Abstract

The quantum Hall effect (QHE) and high temperature superconductivity (HTSC) have remarkable common features. They occur only in two-dimensional (2D) solids. The critical temperature Tc of some HTSC exceeds 160K while the room temperature QHE is observed in graphene. The cause of both QHE and HTSC is the phonon exchange attraction. We develop a theoretical model for the QHE in terms of the composite bosons (fermions), each containing an electron and an odd (even) number of fluxons (magnetic flux quanta). The composite particles (boson, fermion) are bound by the phonon exchange attraction. If the Bose-Einstein condensation (BEC) of the composite (c)- bosons occurs, then the system exhibits zero resistivity and the associated Hall conductivity plateau. The Hall conductivity is calculated rigorously without averaging. The mystery of the fractional charge carried by the c-bosons is resolved in our model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call