Abstract

The harmonic balance technique from nonlinear simulation is extended to nonlinear adjoint sensitivity analysis. This provides an efficient tool for the otherwise expensive but essential gradient calculations in design optimization. The hierarchical approach widely used for circuit simulation, is generalized to sensitivity analysis and to computing responses in any subnetwork at any level of the hierarchy. Important aspects of frequency-domain circuit computer-aided design (CAD) such as simulation and sensitivity analysis, linear and nonlinear circuits, hierarchical and nonhierarchical approaches, voltage and current excitations, or open- and short-circuit terminations are unified in this general framework. The theory provides a basis for the next generation of microwave CAD software. It takes advantage of mature techniques such as syntax-oriented hierarchical analysis, optimization, and yield-driven design to handle nonlinear as well as linear circuits. The sensitivity analysis approach has been verified by a MESFET mixer example, exhibiting a 90% saving of CPU time over the prevailing perturbation method. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.