Abstract
Diffuse optical tomography (DOT) is a non-invasive imaging technique to reconstruct optical properties of biological tissues using near-infrared light, and it has been successfully used to measure functional brain activities via changes in cerebral blood volume and cerebral blood oxygenation. However, DOT presents a severely ill-posed inverse problem, so various types of regularization should be incorporated to overcome low spatial resolution and lack of depth sensitivity. Another limitation of the conventional DOT reconstruction methods is that an inference step is separately performed after the reconstruction, so complicated interaction between reconstruction and regularization is difficult to analyze. To overcome these technical difficulties, we propose a unified sparse recovery framework using a random effect model whose termination criterion is determined by the statistical inference. Both numerical and experimental results confirm that the proposed method outperforms the conventional approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.