Abstract
Abstract This study experimented with a unified scheme of stochastic physics and bias correction within a regional ensemble model [Global and Regional Assimilation and Prediction System–Regional Ensemble Prediction System (GRAPES-REPS)]. It is intended to improve ensemble prediction skill by reducing both random and systematic errors at the same time. Three experiments were performed on top of GRAPES-REPS. The first experiment adds only the stochastic physics. The second experiment adds only the bias correction scheme. The third experiment adds both the stochastic physics and bias correction. The experimental period is one month from 1 to 31 July 2015 over the China domain. Using 850-hPa temperature as an example, the study reveals the following: 1) the stochastic physics can effectively increase the ensemble spread, while the bias correction cannot. Therefore, ensemble averaging of the stochastic physics runs can reduce more random error than the bias correction runs. 2) Bias correction can significantly reduce systematic error, while the stochastic physics cannot. As a result, the bias correction greatly improved the quality of ensemble mean forecasts but the stochastic physics did not. 3) The unified scheme can greatly reduce both random and systematic errors at the same time and performed the best of the three experiments. These results were further confirmed by verification of the ensemble mean, spread, and probabilistic forecasts of many other atmospheric fields for both upper air and the surface, including precipitation. Based on this study, we recommend that operational numerical weather prediction centers adopt this unified scheme approach in ensemble models to achieve the best forecasts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.