Abstract

The partial regularity of the suitable weak solutions to the Navier–Stokes equations in Rn with n=2,3,4 and the stationary Navier–Stokes equations in Rn for n=2,3,4,5,6 are investigated in this paper. Using some elementary observation of these equations together with De Giorgi iteration method, we present a unified proof on the results of Caffarelli, Kohn and Nirenberg [1], Struwe [17], Dong and Du [5], and Dong and Strain [7]. Particularly, we obtain the partial regularity of the suitable weak solutions to the 4d non-stationary Navier–Stokes equations, which improves the previous result of [5], where Dong and Du studied the partial regularity of smooth solutions of the 4d Navier–Stokes equations at the first blow-up time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.