Abstract

Two 3D homogenized models for damage growth in a unidirectional (UD) composite ply are simplified and merged into a unified model. The fibre kinking behaviour is based on fibre kinking theory handled in a finite deformation framework. The nonlinear shear behaviour is pressure dependent and is modelled by combining damage and friction on the fracture plane. Fibre kinking growth and transverse behaviour are modelled with a single damage variable. This allows both modes to occur simultaneously and mutually influence each other in an efficient and physically-based way.For validation the model is tested against micro-mechanical Finite Element (FE) simulations under pure longitudinal compression and influenced by shear. The results show nearly perfect agreement for stiffness, strength and crushing stress. The model validation is performed against two different components under three-point bending and a quasi-static crash scenario. Both simulation show good correlation with experiments, validating thus the present unified model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call