Abstract

This paper introduces a novel gait parameterization method that models gait kinematics as a continuous function of gait cycle phase, walking speed, and ground slope. Kinematic data was recorded from seven able-bodied subjects walking on a treadmill at twenty-seven combinations of walking speed and ground slope. Convex optimization was used to determine the parameters of a function of three variables that fits this experimental data. This function may be able to provide desired trajectories to a virtual constraint controller over a continuum of gait phases and ambulation modes. This could allow for a single, non-switching controller to control a prosthetic leg for a variety of tasks, avoiding many of the problems associated with the ubiquitous use of finite state machines in prosthesis control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call