Abstract
A mathematical theory of complex specified information is introduced which unifies several prior methods of computing specified complexity. Similar to how the exponential family of probability distributions have dissimilar surface forms yet share a common underlying mathematical identity, we define a model that allows us to cast Dembski’s semiotic specified complexity, Ewert et al.’s algorithmic specified complexity, Hazen et al.’s functional information, and Behe’s irreducible complexity into a common mathematical form. Adding additional constraints, we introduce canonical specified complexity models, for which one-sided conservation bounds are given, showing that large specified complexity values are unlikely under any given continuous or discrete distribution and that canonical models can be used to form statistical hypothesis tests, by bounding tail probabilities for arbitrary distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.