Abstract

Abstract A single-column model (SCM) is developed for representing moist convective boundary layers. The key component of the SCM is the parameterization of subgrid-scale vertical mixing, which is based on a stochastic eddy-diffusivity/mass-flux (EDMF) approach. In the EDMF framework, turbulent fluxes are calculated as a sum of the turbulent kinetic energy–based eddy-diffusivity component and a mass-flux component. The mass flux is modeled as a fixed number of steady-state plumes. The main challenge of the mass-flux model is to properly represent cumulus clouds, which are modeled as moist plumes. The solutions have to account for a realistic representation of condensation within the plumes and of lateral entrainment into the plumes. At the level of mean condensation within the updraft, the joint pdf of moist conserved variables and vertical velocity is used to estimate the proportion of dry and moist plumes and is sampled in a Monte Carlo way creating a predefined number of plumes. The lateral entrainment rate is modeled as a stochastic process resulting in a realistic decrease of the convective cloudiness with height above cloud base. In addition to the EDMF scheme, the following processes are included in the SCM: a pdf-based parameterization of subgrid-scale condensation, a simple longwave radiation, and one-dimensional dynamics. Note that in this approach there are two distinct pdfs, one representing the variability of updraft properties and the other one the variability of thermodynamic properties of the surrounding environment. The authors show that the model is able to capture the essential features of moist boundary layers, ranging from stratocumulus to shallow-cumulus regimes. Detailed comparisons, which include pdfs, profiles, and integrated budgets with the Barbados Oceanographic and Meteorological Experiment (BOMEX), Dynamics and Chemistry of Marine Stratocumulus (DYCOMS), and steady-state large-eddy simulation (LES) cases, are discussed to confirm the quality of the present approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.