Abstract

A unified model based on the ultrasonic lag phase slope is developed for measuring the lubricating film thickness at a large scale. The ultrasonic lag phase of adjacent waves instead of the phase of overlapped waves is calculated as a function of the ultrasonic frequency and film thickness. The slope of the ultrasonic lag phase is determined correspondingly, which is linearly proportional to the lubricating film thickness. Both the finite element analysis and tests on the lubricating film thickness are performed to verify the proposed method. The results show that despite the fluctuations of the lag phase, the lag phase slope can be used for measuring the lubricating film thickness at a large scale from 0.1 μm to 170 μm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call