Abstract

This article introduces a unified mixed finite element framework based on a saddle-point formulation that applies to time-dependent fourth order linear and nonlinear problems with clamped, simply supported, and Cahn-Hilliard type boundary conditions. The classical mixed formulations lead to large matrix systems that demand huge storage and computational time making the schemes expensive, especially for the time-dependent problems. The proposed scheme circumvents this by employing biorthogonal basis functions that lead to sparse and positive-definite systems. The article discusses a mixed finite element method for the biharmonic problem and the time-dependent linear and nonlinear versions of the extended Fisher-Kolmogorov equations equipped with the aforementioned boundary conditions. The wellposedness of the scheme is discussed and a priori error estimates are presented for the semi-discrete and fully discrete finite element schemes. The numerical experiments validate the theoretical estimates derived in the paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.