Abstract
Co-saliency detection, which focuses on extracting commonly salient objects in a group of relevant images, has been attracting research interest because of its broad applications. In practice, the relevant images in a group may have a wide range of variations, and the salient objects may also have large appearance changes. Such wide variations usually bring about large intra-co-salient objects (intra-COs) diversity and high similarity between COs and background, which makes the co-saliency detection task more difficult. To address these problems, we make the earliest effort to introduce metric learning to co-saliency detection. Specifically, we propose a unified metric learning-based framework to jointly learn discriminative feature representation and co-salient object detector. This is achieved by optimizing a new objective function that explicitly embeds a metric learning regularization term into support vector machine (SVM) training. Here, the metric learning regularization term is used to learn a powerful feature representation that has small intra-COs scatter, but big separation between background and COs and the SVM classifier is used for subsequent co-saliency detection. In the experiments, we comprehensively evaluate the proposed method on two commonly used benchmark data sets. The state-of-the-art results are achieved in comparison with the existing co-saliency detection methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.