Abstract

This paper provides a road-map for the development of simple core/clad optical fibers whose enhanced performance - in particular, marked reductions in optical nonlinearities - is achieved materially and not through the more conventional present routes of geometrically complex fiber design. More specifically, the material properties that give rise to Brillouin, Raman, and Rayleigh scattering, transverse mode instabilities (TMI), and n2-mediated nonlinear effects are compiled and results on a wide range of optical fibers are discussed with a focus on trends in performance with glass composition. Further, optical power scaling estimations as well as binary and ternary property diagrams associated with Rayleigh scattering, the Brillouin gain coefficient (BGC) and the thermo-optic coefficient (dn/dT) are developed and employed to graphically represent general trends with composition along with compositional targets for a single intrinsically low nonlinearity, silica-based optical fiber that can achieve the powerscaling goals of future high energy fiber laser applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.