Abstract
It has been widely acknowledged that learning- and reconstruction-based super-resolution (SR) methods are effective to generate a high-resolution (HR) image from a single low-resolution (LR) input. However, learning-based methods are prone to introduce unexpected details into resultant HR images. Although reconstruction-based methods do not generate obvious artifacts, they tend to blur fine details and end up with unnatural results. In this paper, we propose a new SR framework that seamlessly integrates learning- and reconstruction-based methods for single image SR to: 1) avoid unexpected artifacts introduced by learning-based SR and 2) restore the missing high-frequency details smoothed by reconstruction-based SR. This integrated framework learns a single dictionary from the LR input instead of from external images to hallucinate details, embeds nonlocal means filter in the reconstruction-based SR to enhance edges and suppress artifacts, and gradually magnifies the LR input to the desired high-quality SR result. We demonstrate both visually and quantitatively that the proposed framework produces better results than previous methods from the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.