Abstract

Viewpoint selection is an emerging area in computer graphics with applications in fields such as scene exploration, image-based modeling, and volume visualization. In particular, best view selection algorithms are used to obtain the minimum number of views (or images) in order to understand or model an object or scene better. In this article, we present a unified framework for viewpoint selection and mesh saliency based on the definition of an information channel between a set of viewpoints (input) and the set of polygons of an object (output). The mutual information of this channel is shown to be a powerful tool to deal with viewpoint selection, viewpoint stability, object exploration and viewpoint-based saliency. In addition, viewpoint mutual information is extended using saliency as an importance factor, showing how perceptual criteria can be incorporated to our method. Although we use a sphere of viewpoints around an object, our framework is also valid for any set of viewpoints in a closed scene. A number of experiments demonstrate the robustness of our approach and the good behavior of the proposed measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.