Abstract

AbstractErdős and Pósa proved in 1965 that there is a duality between the maximum size of a packing of cycles and the minimum size of a vertex set hitting all cycles. Such a duality does not hold if we restrict to odd cycles. However, in 1999, Reed proved an analogue for odd cycles by relaxing packing to half‐integral packing. We prove a far‐reaching generalisation of the theorem of Reed; if the edges of a graph are labelled by finitely many abelian groups, then there is a duality between the maximum size of a half‐integral packing of cycles whose values avoid a fixed finite set for each abelian group and the minimum size of a vertex set hitting all such cycles. A multitude of natural properties of cycles can be encoded in this setting, for example, cycles of length at least , cycles of length modulo , cycles intersecting a prescribed set of vertices at least times and cycles contained in given ‐homology classes in a graph embedded on a fixed surface. Our main result allows us to prove a duality theorem for cycles satisfying a fixed set of finitely many such properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call