Abstract

In D.O.A. estimation, identification of the signal and the noise subspaces plays an essential role. This identification process was traditionally achieved by the eigenvalue decomposition (EVD) of the spatial correlation matrix of observations or the generalized eigenvalue decomposition (GEVD) of the spatial correlation matrix of observations with respect to that of an observation noise. The framework based on the GEVD is not always an extension of that based on the EVD, since the GEVD is not applicable to the noise-free case which can be resolved by the framework based on the EVD. Moreover, they are not applicable to the case in which the spatial correlation matrix of the noise is singular. Recently, a quotient-singular-value-decomposition-based framework, that can be applied to problems with singular noise correlation matrices, is introduced for noise reduction. However, this framework also can not treat the noise-free case. Thus, we do not have a unified framework of the identification of these subspaces. In this paper, we show that a unified framework of the identification of these subspaces is realized by the concept of proper and improper eigenspaces of the spatial correlation matrix of the noise with respect to that of observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.