Abstract

Abstract : This paper presents a formal mathematical framework which unifies the existing loop transformations. This framework also includes more general classes of loop transformations, which can extract more parallelism from a class of programs than the existing techniques. We classify schedules into three classes: uniform, subdomain-variant, and statement-variant. Viewing from the degree of parallelism to be gained by loop transformation, the schedules can also be classified as single-sequential level, multiple-sequential level, and mixed schedules. We also illustrate the usefulness of the more general loop transformation with an example program.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.