Abstract
We propose a stochastic framework based on sensitivity analysis (SA) methods to quantify the key-input parameters influencing the Young’s modulus of polymer (epoxy) clay nanocomposites (PCNs). The input parameters include the clay volume fraction, clay aspect ratio, clay curvature, clay stiffness and epoxy stiffness. All stochastic methods predict that the key parameters for the Young’s modulus are the epoxy stiffness followed by the clay volume fraction. On the other hand, the clay aspect ratio, clay curvature and the clay stiffness have an insignificant effect on the Young’s modulus of PCNs. Besides the results on the sensitivity of the input parameters, this work includes a comparative study of a series of stochastic methods to predict mechanical properties of PCNs with respect to their performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.