Abstract

Transfer learning has been proven to be effective for the problems where training data from a source domain and test data from a target domain are drawn from different distributions. To reduce the distribution divergence between the source domain and the target domain, many previous studies have been focused on designing and optimizing objective functions with the Euclidean distance to measure dissimilarity between instances. However, in some real-world applications, the Euclidean distance may be inappropriate to capture the intrinsic similarity or dissimilarity between instances. To deal with this issue, in this paper, we propose a metric transfer learning framework (MTLF) to encode metric learning in transfer learning. In MTLF, instance weights are learned and exploited to bridge the distributions of different domains, while Mahalanobis distance is learned simultaneously to maximize the intra-class distances and minimize the inter-class distances for the target domain. Unlike previous work where instance weights and Mahalanobis distance are trained in a pipelined framework that potentially leads to error propagation across different components, MTLF attempts to learn instance weights and a Mahalanobis distance in a parallel framework to make knowledge transfer across domains more effective. Furthermore, we develop general solutions to both classification and regression problems on top of MTLF, respectively. We conduct extensive experiments on several real-world datasets on object recognition, handwriting recognition, and WiFi location to verify the effectiveness of MTLF compared with a number of state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.