Abstract

We present a unified framework to simulate heat and mass transport in systems of particles. The proposed framework is based on kinematic mean field theory and uses a phenomenological master equation to compute effective transport rates between particles without the need to evaluate operators. We exploit this advantage and apply the model to simulate transport phenomena at the nanoscale. We demonstrate that, when calibrated to experimentally-measured transport coefficients, the model can accurately predict transient and steady state temperature and concentration profiles even in scenarios where the length of the device is comparable to the mean free path of the carriers. Through several example applications, we demonstrate the validity of our model for all classes of materials, including ones that, until now, would have been outside the domain of computational feasibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call