Abstract

Two-phase pipe flow occurs frequently in oil & gas industry, nuclear power plants, and CCUS. Reliable calculations of gas void fraction (or liquid holdup) play a central role in two-phase pipe flow models. In this paper we apply the fractional flow theory to multiphase flow in pipes and present a unified modeling framework for predicting the fluid phase volume fractions over a broad range of pipe flow conditions. Compared to existing methods and correlations, this new framework provides a simple, approximate, and efficient way to estimate the phase volume fraction in two-phase pipe flow without invoking flow patterns. Notably, existing correlations for estimating phase volume fraction can be transformed and expressed under this modeling framework. Different fractional flow models are applicable to different flow conditions, and they demonstrate good agreement against experimental data within 5% errors when compared with an experimental database comprising of 2754 data groups from 14 literature sources, covering various pipe geometries, flow patterns, fluid properties and flow inclinations. The gas void fraction predicted by the framework developed in this work can be used as inputs to reliably model the hydraulic and thermal behaviors of two-phase pipe flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.