Abstract

This paper presents a unified theoretical framework for the corotational (CR) formulation of finite elements in geometrically nonlinear structural analysis. The key assumptions behind CR are: (i) strains from a corotated configuration are small while (ii) the magnitude of rotations from a base configuration is not restricted. Following a historical outline the basic steps of the element independent CR formulation are presented. The element internal force and consistent tangent stiffness matrix are derived by taking variations of the internal energy with respect to nodal freedoms. It is shown that this framework permits the derivation of a set of CR variants through selective simplifications. This set includes some previously used by other investigators. The different variants are compared with respect to a set of desirable qualities, including self-equilibrium in the deformed configuration, tangent stiffness consistency, invariance, symmetrizability, and element independence. We discuss the main benefits of the CR formulation as well as its modeling limitations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.