Abstract

A mechanistic understanding of electro- and photocatalytic CO2 reduction is crucial to develop strategies to overcome catalytic bottlenecks. In this regard, for a new CO2-to-CO reduction cobalt aminopyridine catalyst, a detailed experimental and theoretical mechanistic study is herein presented toward the identification of bottlenecks and potential strategies to alleviate them. The combination of electrochemistry and in situ spectroelectrochemistry together with spectroscopic techniques led us to identify elusive key electrocatalytic intermediates derived from complex [LN4Co(OTf)2] (1) (LN4 = 1-[2-pyridylmethyl]-4,7-dimethyl-1,4,7-triazacyclononane) such as a highly reactive cobalt(I) (1(I)) and a cobalt(I) carbonyl (1(I)-CO) species. The combination of spectroelectrochemical studies under CO2, 13CO2, and CO with DFT disclosed that 1(I) reacts with CO2 to form the pivotal 1(I)-CO intermediate at the 1(II/I) redox potential. However, at this reduction potential, the formation of 1(I)-CO restricts the electrocatalysis due to the endergonicity of the CO release step. In agreement with the experimentally observed CO2-to-CO electrocatalysis at the CoI/0 redox potential, computational studies suggested that the electrocatalytic cycle involves striking metal carbonyls. In contrast, under photochemical conditions, the catalysis smoothly proceeds at the 1(II/I) redox potential. Under the latter conditions, it is proposed that the electron transfer to form 1(I)-CO from 1(II)-CO is under diffusion control. Then, the CO release from 1(II)-CO is kinetically favored, facilitating the catalysis. Finally, we have found that visible-light irradiation has a positive impact under electrocatalytic conditions. We envision that light irradiation can serve as an effective strategy to circumvent the CO poisoning and improve the performance of CO2 reduction molecular catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.