Abstract

This work focuses on bearing rigidity theory, namely the branch of knowledge investigating the structural properties necessary for multi-element systems to preserve the inter-unit bearings under deformations. The contributions of this work are twofold. The first one consists in the development of a general framework for the statement of the principal definitions and properties of bearing rigidity. We show that this approach encompasses results existing in the literature, and also provides a systematic approach for studying bearing rigidity on any differential manifold in SE(3)^n, where n is the number of agents. The second contribution is the derivation of a general form of the rigidity matrix, a central construct in the study of rigidity theory. We provide a necessary and sufficient condition for the infinitesimal rigidity of a bearing framework as a property of the rank of the rigidity matrix. Finally, we present two examples of multi-agent systems not encountered in the literature and we study their rigidity properties using the developed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.