Abstract
Protein aggregation via liquid-liquid phase separation (LLPS) is ubiquitous in nature and is intimately connected to many human diseases. Although it is widely known that the addition of salt has crucial impacts on the LLPS of proteins, full understanding of the salt effects remains an outstanding challenge. Here, we develop a molecular theory that systematically incorporates the self-consistent field theory for charged macromolecules into the solution thermodynamics. The electrostatic interaction, hydrophobicity, ion solvation, and translational entropy are included in a unified framework. Our theory fully captures the long-standing puzzles of the nonmonotonic salt concentration dependence and the specific ion effect. We find that proteins show salting-out at low salt concentrations due to ionic screening. The solubility follows the inverse Hofmeister series. In the high salt concentration regime, protein continues salting-out for small ions but turns to salting-in for larger ions, accompanied by the reversal of the Hofmeister series. We reveal that the solubility at high salt concentrations is determined by the competition between the solvation energy and translational entropy of the ion. Furthermore, we derive an analytical criterion for determining the boundary between the salting-in and salting-out regimes, which is in good agreement with experimental results for various proteins and salt ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.