Abstract
There are various definitions of mutual information. Essentially, these definitions can be divided into two classes: (1) definitions with random variables and (2) definitions with ensembles. However, there are some mathematical flaws in these definitions. For instance, Class 1 definitions either neglect the probability spaces or assume the two random variables have the same probability space. Class 2 definitions redefine marginal probabilities from the joint probabilities. In fact, the marginal probabilities are given from the ensembles and should not be redefined from the joint probabilities. Both Class 1 and Class 2 definitions assume a joint distribution exists. Yet, they all ignore an important fact that the joint or the joint probability measure is not unique. In this paper, we first present a new unified definition of mutual information to cover all the various definitions and to fix their mathematical flaws. Our idea is to define the joint distribution of two random variables by taking the marginal probabilities into consideration. Next, we establish some properties of the newly defined mutual information. We then propose a method to calculate mutual information in machine learning. Finally, we apply our newly defined mutual information to credit scoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.