Abstract

The acoustic refraction induced by the shear layer in an open-jet wind tunnel causes a source shift when estimating the source location with beamforming. Traditional correction methods of the shear layer refraction are achieved through a computational eff ort or limited using one-dimensional or planar shear layer. In this paper, the unified correction method for acoustic refraction (UCMAR) is suitable for the three dimensions that covers several traditional forms. Meanwhile, the UCMAR can consider more general configurations, such as the temperature gradient on both sides of the shear layer and the off -axis source in a circular wind tunnel. These configurations are validated through a ray tracing technique and a benchmark example. In addition, the principle of time reverse is integrated with UCMAR. This results in a reverse UCMAR, which can quickly attain an acceptable solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.