Abstract

This paper presents a unified control strategy that enables both islanded and grid-tied operations of three-phase inverter in distributed generation, with no need for switching between two corresponding controllers or critical islanding detection. The proposed control strategy composes of an inner inductor current loop, and a novel voltage loop in the synchronous reference frame. The inverter is regulated as a current source just by the inner inductor current loop in grid-tied operation, and the voltage controller is automatically activated to regulate the load voltage upon the occurrence of islanding. Furthermore, the waveforms of the grid current in the grid-tied mode and the load voltage in the islanding mode are distorted under nonlinear local load with the conventional strategy. And this issue is addressed by proposing a unified load current feedforward in this paper. Additionally, this paper presents the detailed analysis and the parameter design of the control strategy. Finally, the effectiveness of the proposed control strategy is validated by the simulation and experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call