Abstract

This study presents a sophisticated elastoplastic constitutive model for unsaturated soil using Bishop-type skeleton stress and degree of saturation as state variables in the framework of critical state soil mechanism. The model is proposed in order to describe the coupled hydromechanical behavior of unsaturated soil irrespective of what kind of the loadings or the drainage conditions may be. At the same time, a water retention characteristic curve considering the influence of deformation on degree of saturation is also proposed. In the model, the superloading and subloading concepts are introduced to consider the influences of overconsolidation and structure on deformation and strength of soils. The proposed model only employs nine parameters, among which five parameters are the same as those used in Cam-Clay model. The other four parameters have the clear physical meanings and can be easily determined by conventional soil tests. The capability and accuracy of the proposed model have been validated carefully through a series of laboratory tests such as isotropic loading tests and triaxial monotonic and cyclic compression tests under different mechanical and hydraulic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.