Abstract
ABSTRACT The creep response of AISI 316 and AISI 316 L was analysed to provide a coherent picture of the material behaviour, valid for both conventional wrought and additively manufactured steels. Literature evidences were considered. The analysis demonstrated that the presence of a fine distribution of particles, precipitated during creep exposure in both AISI 316 and 316 L(N), should be taken into account. A recent model, expressly developed for particle-strengthened alloys, was successfully used to describe the minimum creep rate dependence on applied stress for AISI 316 and 316 L(N). The same set of constitutive equations, in combination with the composite model, was then used for describing creep data obtained by testing the AISI 316 L produced by additive manufacturing. The main difference with wrought materials was that the microstructure of the additively manufactured alloy was composed by cells (soft zones) and thick walls heavily decorated with ultrafine oxide particles (hard zones).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.