Abstract

Generalizing Fiore et al.'s use of the category of finite sets to model untyped Cartesian contexts and Tanaka's use of the category of permutations to model untyped linear contexts, we let S be an arbitrary pseudo-monad on Cat and let S1 model untyped contexts in general: this generality includes contexts for sub-structural logics such as the Logic of Bunched Implications and variants. Given a pseudo-distributive law of S over the (partial) pseudo-monad for free cocompletions, we define a canonical substitution monoidal structure on the category [(S1)op, Set], generalizing substitution monoidal structures for Cartesian and linear contexts and providing a natural substitution structure for Bunched Implications and its variants. We give a concrete description of the substitution monoidal structure. We then give an axiomatic definition of a binding signature, again extending the definitions for Cartesian and linear contexts. We investigate examples in detail, then prove the central result of the paper, yielding initial algebra semantics for binding signatures at the level of generality we propose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.