Abstract

This research proposes a phase-change memory (PCM) based main memory system with an effective combination of a superblock-based adaptive buffering structure and its associated set divisible last-level cache (LLC). To achieve high performance similar to that of dynamic random-access memory (DRAM) based main memory, the superblock-based adaptive buffer (SABU) is comprised of dual DRAM buffers, i.e., an aggressive superblock-based pre-fetching buffer (SBPB) and an adaptive sub-block reusing buffer (SBRB), and a set divisible LLC based on a cache space optimization scheme. According to our experiment, the longer PCM access latency can typically be hidden using our proposed SABU, which can significantly reduce the number of writes over the PCM main memory by 26.44%. The SABU approach can reduce PCM access latency up to 0.43 times, compared with conventional DRAM main memory. Meanwhile, the average memory energy consumption can be reduced by 19.7%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.