Abstract

Deep reinforcement learning stands as a powerful force in the realm of intelligent control for hybrid power systems, yet some imperfections persist in the positive progression of learning-based strategies, necessitating the proposal of essential solutions to address these flaws. Firstly, a public and reliable benchmark model for hybrid powertrains and the optimization results of energy management strategies are essential. Hence, two Python-based standard deep reinforcement learning agents and four Simulink-based hybrid powertrains are employed, forming a co-simulation training approach as the reliable solution. Secondly, a detailed analysis from the perspectives of range, magnitude, and importance reveals that the optimization terms in traditional reward functions can mislead the agent during the training process and require cumbersome weight tuning. Accordingly, this paper proposes a novel training idea that combines the rule-based engine start-stop with an unweighted reward tailored for optimizing engine efficiency and facilitating training progress. Finally, a hardware-in-the-loop test is performed, treating the P2 hybrid electric vehicle as the target. The results show that two deep reinforcement learning-based energy management strategies achieved fuel economies of 6.537 L/100 km and 6.330 L/100 km, respectively, and more efficient and reasonable control sequences ensure the working state of the engine as well as the state of charge of batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.