Abstract

A probabilistic evolutionary framework is presented and shown to be applicable to both learning and optimization problems. In this framework, evolutionary computation is viewed as Bayesian inference that iteratively updates the posterior distribution of a population from the prior knowledge and observation of new individuals to find an individual with the maximum posterior probability Theoretical foundations of Bayesian evolutionary computation are given and its generality is demonstrated by showing specific Bayesian evolutionary algorithms for learning and optimization. We also discuss how the probabilistic framework can be used to develop novel evolutionary algorithms that embed evolutionary learning for evolutionary optimization and vice versa.KeywordsPosterior DistributionEvolutionary ComputationBayesian FrameworkSearch PointSimple Genetic AlgorithmThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.