Abstract

A challenge for many wireless sensor networks is to remain operational for long periods of time on a very limited power supply. While many power management protocols have been proposed, a solution does not yet exist that allows them to be seamlessly integrated into the existing systems. In this paper we study the architectural support required to resolve this issue. We propose a framework that separates sleep scheduling from the basic MAC layer functionality and provide a set of unified interfaces between them. This framework enables different sleep scheduling policies to be easily implemented on top of multiple MAC layers. Such a flexibility allows applications to choose the best sleep scheduling policy based on their own particular needs. We demonstrate the practicality of our approach by implementing this framework on top of both the mica2 and telosb radio stacks in TinyOS 2.0. Our micro-benchmark results show that at the cost of a slight increase in code size, our framework significantly eases the development of new radio power management protocols across multiple WSN platforms. Type of Report: Other Department of Computer Science & Engineering Washington University in St. Louis Campus Box 1045 St. Louis, MO 63130 ph: (314) 935-6160 A Unified Architecture for Flexible Radio Power Management in Wireless Sensor Networks Kevin Klues, Guoliang Xing, Chenyang Lu Department of Computer Science and Engineering Washington University in St. Louis {klueska, xing, lu}@cs.wustl.edu

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.