Abstract
In this paper we consider a unified (polynomial time) approximation method for node-deletion problems with nontrivial and hereditary graph properties. One generic algorithm scheme is presented, which can be applied to any node-deletion problem for finding approximate solutions. It will be shown then that the quality of solutions found by this algorithm is determined by the quality of any minimal solution in any graph in which nodes are weighted according to a certain scheme chosen by the algorithm. For various node-deletion problems simple and natural schemes for weight assignment are considered. It will be proven that the weight of any minimal solution is a good approximation to the optimal weight when graphs are weighted according to them, implying that our generic algorithm indeed computes good approximate solutions for those node-deletion problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.