Abstract

Type synthesis of both rigid and compliant parallel mechanisms has become a hot issue in the field of mechanisms and robotics research in recent years. A unified approach to type synthesis of the two classes of mechanisms, however, has not been referred and investigated up to date. Based on the state-of-art analysis for several major type synthesis approaches related to rigid and compliant mechanisms, respectively, it proves feasible to establish a unified methodology for type synthesis of these two classes of mechanisms. That is a synthesis philosophy in terms of the hierarchy mapping between mathematic, physical, and mechanical building blocks in the framework of screw theory, as addressed in this paper. The key point of the proposed method lies in establishing the mapping among three different building blocks (i.e. geometric building block, kinematic or constraint building block, and mechanical building block). As a result, it makes the whole type synthesis process simple and visible. By using the proposed method, two examples are taken to verify the effectiveness for the type synthesis of both rigid and flexure mechanisms. The content of this paper may provide a theoretical frame for constructing a visualized algorithm or software about the unified type synthesis (or conceptual design) of both rigid and flexure parallel mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call